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ABSTRACT

A novel approach to speech dereverberation is presented.
The method is based on construction of the null space of
the data matrix in the presence of colored noise, using the
GSVD technique. The special Sylvester structure of the
filtering matrix, related to this subspace, is exploited for
deriving a LS estimate for the acoustical filters. Other,
less robust but computationally more efficient methods are
derived based on the same structure. A preliminary exper-
imental study supports the potential of the method.

1. INTRODUCTION

In many speech communication applications, the recorded
speech signal is subject to reflections on the room walls and
other objects on its way from the source to the microphones.
The resulting speech signal is then called reverberated. The
quality of the speech signal might deteriorate severely and
this can even cause a degradation in intelligibility. Subse-
quent processing of the speech signal, such as speech coding
or automatic speech recognition might be rendered useless
in the presence of reverberated speech. The most successful
methods for dereverberation are based on multi-microphone
measurements. Beamforming methods which steer a beam
towards the direction of arrival of the desired signal (or
more generally, towards the transfer function of the desired
signal) can reduce the amount of reverberation but can not
eliminate it completely. Spatio-temporal methods, consist-
ing of application of spatial averaging and cepstrum domain
processing are presented by Liu et al. [1]. Other meth-
ods are based on the structure of the correlation matrix of
the measurements (e.g. Moulines et al. [2] and Gürelli and
Nikias [3]). The methods presented in this contribution are
also based on the structure of the correlation matrix. We
will start by deriving a method for constructing the null
space in the presence of colored noise. Then, the special
structure of the filtering matrix will be exploited to derive
a LS approach for acoustical transfer function(ATF) estima-
tion as well as some suboptimal procedures. The derivation
of the algorithm is followed by a preliminary experimental
study.
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2. PROBLEM FORMULATION

Assume a speech signal is received by M microphones in
a noisy and reverberating environment. Then, for m =
1, . . . , M ; t = 0, 1, . . . , T ,

zm(t) = am(t)∗s(t)+nm(t) =

na∑

k=0

am(k)s(t−k)+nm(t) (1)

Where, zm(t) is the m−th received signal, nm(t) is the noise
signal received in the m−th microphone, s(t) is the desired
speech signal and T +1 is the number of samples observed. ∗
denotes the convolution operation. We further assume that
the acoustical transfer functions (ATFs) relating the speech
source and each of the M microphones can be modeled as
an FIR filter of order na, aT

m = [am(0), am(1), . . . , am(na)].
Define also the Z−transform of each of the M filters as,

Am(z) =

na∑

k=0

am(k)z−k
.

The goal of the dereverberation problem is to reconstruct
the speech signal s(t) from the noisy observations zm(t).
This goal may be achieved by first estimating the ATFs,
am(t).

3. ALGORITHM DERIVATION

We will start our discussion dealing with a special case of
the problem and then proceed to the general case.

3.1. Two microphone noiseless case - preliminaries

In this section we will lay the foundations of the algorithm
by noting that the the desired ATFs are embedded in the
null space of the signals’ data matrix.

The two microphone noiseless case is depicted in Fig-
ure 1. The noiseless signals, denoted by ym(t), are given in
Eq. 2, as can be seen from the left-hand side of the Figure.

y1(t) = a1(t) ∗ s(t) (2)

y2(t) = a2(t) ∗ s(t).

Clearly, as can be seen from the right-hand side of Figure 1,
the following identity holds.

[y2(t) ∗ a1(t) − y1(t) ∗ a2(t)] ∗ el(t) = 0 (3)

where, el(t), l = 0, 1, 2, . . . are arbitrary and unknown fil-
ters, the number of which and their order will be discussed
in the sequel. Define the (n̂a + 1) × (T + n̂a + 1) single
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Figure 1: Null space in the two microphone noiseless case.

channel data matrix Ym, given in Eq. 4 at the top of the
page. We assume that the inequality n̂a ≥ na holds, i.e.,
the ATFs order is always overestimated. Define also the
two-channel data matrix,

Y =

[
Y2

−Y1

]

.

The 2(n̂a + 1)× 2(n̂a + 1) correlation matrix of the data is

thus given by R̂y = YYT

T+1
.

Now, following [3] and [2], the null space of the corre-
lation matrix can be calculated by virtue of the eigenvalue
decomposition. Let λl ; l = 0, 1, . . . , 2n̂a + 1 be the eigen-
values of the correlation matrix R̂y, then by sorting them
in ascending order we will have,

λl = 0 l = 0, 1, . . . , n̂a − na

λl > 0 otherwise
. (5)

Thus, as proven by Gürelli and Nikias [3], the rank of the
null space of the correlation matrix is n̂a − na + 1. We
note that the singular value decomposition (SVD) of the
data matrix, Y, might be used instead of the eigenvalue
decomposition for determining the null space. The SVD is
generally regarded as a more robust method.

Denote the null space vectors (eigenvectors correspond-
ing to zero eigenvalues or singular values) by gl for l =
0, 1, 2, . . . , n̂a − na + 1. Then, splitting each null space vec-
tor into two parts of equal length n̂a + 1 yields,

G =
[
g0 g1 · · · gn̂a−na

]
= (6)

[
ã1,0 ã1,1 · · · ã1,n̂a−na

ã2,0 ã2,1 · · · ã2,n̂a−na

]

.

Each of the n̂a+1-long vectors represents an n̂a order filters,

Ãml(z) =

n̂a∑

k=0

ãml(k)z−k

l = 0, 1, . . . , n̂a − na ; m = 1, 2.

From the above discussion, the null space filters are given
by,

Ãml(z) = Am(z)El(z) (7)

l = 0, 1, , . . . , n̂a − na ; m = 1, 2.

Thus, the zeros of the filters Ãml(z) extracted from the null
space of the data, contain the roots of the desired filters
as well as some extraneous zeros. This observation was
proven by Gürelli and Nikias [3] as the basis of their EVAM
algorithm. It can be stated in the following lemma (for the
general M channel case):

Lemma 3.1 Let ãml be the partitions of the null space

eigenvectors into M vectors of length n̂a + 1, with Ãml(z)

their equivalent filters. Then, all the filters Ãml(z) for l =
0, . . . , n̂a −na have na common roots, which constitutes the

desired ATFs Am(z), and n̂a−na different extraneous roots.

These extraneous roots are common for all partitions of the

same vector, i.e., Ãml(z) for m = 1, . . . , M .

Under several regularity conditions (stated, for example by
Moulines et al. [2]), the filters Am(z) can be found.

In matrix form Eq. 7 may be written in the following
manner. Define the (n̂a+1)×(n̂a−na+1) Sylvester filtering
matrix (recall we assume n̂a ≥ na),
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. (8)

Then,
ãml = Amel, (9)

where, eT
l =

[
el(0) el(1) . . . el(n̂a − na)

]
are vectors of

the coefficients of the arbitrary unknown filters. Thus, the
number of different filters (as shown in Eq. 7) is n̂a −na +1
and their order is n̂a − na. Using Fig 1 and Eq. 3 and
denoting,

E =
[
e0 e1 · · · en̂a−na

]
,

we conclude

G =

[
A1

A2

]

E
4
= AE . (10)

We note, that in the special case when the ATFs’ order
is known, i.e. n̂a = na, there is only one vector in the
null space and its partitions ãm0 ; m = 1, . . . , M are equal



to the desired filters am up to a (common) scaling factor
ambiguity. In the general case n̂a > na the real M ATFs
Am(z) are embedded in Ãml(z) ; l = 0, 1, . . . , n̂a − na.

The special structure depicted in Eq. 10 forms the basis
of our suggested algorithm.

3.2. Two microphone noiseless case - algorithm

Based on the special structure of Eq. 10 and in particular
on the Sylvester structure of A1 and A2 we will now derive
an algorithm for finding the ATFs Am(z).

Note that E in Eq. 10 is a square and arbitrary matrix,
implying that its inverse usually exists. Denote this inverse
by Ei = inv(E). Then.

GE
i = A (11)

Denote the columns of E i by, Ei =
[
ei
0 ei

1 · · · ei
n̂a−na

]
.

Eq. 11 can be rewritten as,

G̃x = 0 (12)

where, G̃ is defined as,

G̃ =
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(13)

and the vector of unknowns is defined as,

xT =
[
ei
0 ei

1 · · · ei
n̂a−na

a1 a2

]

0 is a vector of zeros: 0T =
[

0 0 · · · 0
]
.

We used the following expressions: O is a 2(n̂a + 1) ×

(n̂a−na +1) all-zeros matrix and I(l) ; l = 0, 1, . . . , n̂a−na

is given by,

I
(l) =










Ol×(na+1)

I(na+1)×(na+1)

O(n̂a−na−l)×(na+1)

O(n̂a+1)×(na+1)

O(n̂a+1)×(na+1)

Ol×(na+1)

I(na+1)×(na+1)

O(n̂a−na−l)×(na+1)










A non-trivial (and exact) solution for the set of equa-
tions may be obtained by finding the eigenvector of the
matrix G̃ corresponding to its zero eigenvalue. The ATF
coefficients are given by the last 2(na + 1) terms of this
eigenvector. This method will be useful in the presence of
noise.

3.3. Two microphone noisy case

Recall that G is a matrix containing the eigenvectors cor-
responding to zero eigenvalues of the noiseless data matrix.
In presence of additive noise, the noisy observations zm(t),
given in Eq. 1, can be stacked into a data matrix fulfilling

Z = Y + N ,

where, Z and N are noisy signal and noise-only signal data
matrices, respectively, defined in a similar way to Eq. 4.

Now, for long observation time the following approximation

holds, R̂z ≈ R̂y +R̂n where, R̂z = ZZT

T+1
and R̂n = NNT

T+1
are

the noisy signal and noise-only signal correlation matrices,
respectively. Now, Eq. 12 would not be accurate anymore.
A reasonable approximation, although not exact, would be
to transform Eq. 12 into the following least squares (LS)
problem,

G̃x = ε.

The eigenvector corresponding to the smallest eigenvalue
will reveal the desired LS solution for the vector x and hence
for the desired ATFs. The null space matrix determination
for both the white noise case and the colored noise case will
be addressed in the sequel.

3.3.1. White noise case

In the case of spatio-temporal white noise - i.e. R̂n ≈ σ2I,
where I is the identity matrix - the first n̂a−na+1 eigenval-
ues in Eq. 5 will be σ2 instead of zero. The corresponding
eigenvectors will remain intact. Thus, the algorithm will
not change.

3.3.2. Colored noise case

The case of colored noise was addressed in [2],[3]. We sug-
gest an alternative method which is computationally more
efficient, as no pre-whitening of the noise correlation matrix
is involved. We suggest to use the generalized eigenvalue de-
composition of the measurement correlation matrix, Rz and
the noise correlation matrix Rv (usually, the latter is esti-
mated from speech-free data segments). Then the null space
matrix G is formed by choosing the generalized eigenvectors
related to the generalized eigenvalues of value 1. The sub-
sequent steps of the algorithm remain intact. Alternatively,
we can use the generalized SVD of the corresponding data
matrices.

3.4. Multi microphone case (M > 2)

In the multi microphone case a reasonable extension would

be based on channel pairing (see [3]). Each of the M×(M−1)
2

pairs fulfills,

[yi(t) ∗ aj(t) − yj(t) ∗ ai(t)] ∗ el(t) = 0.

Thus, the data matrix would be constructed as follows,

Z =














Z2 Z3 · · · ZM O · · · O · · · O
−Z1 O · · · Z3 · · · ZM O

O −Z1 −Z2 O
...

... O
. . .

... O
...

. . . O ZM

O O · · · −Z1 · · · −Z2 · · · −ZM−1














,

(14)
where O here is an (n̂a +1)× (T + n̂a +1) all-zero matrix.

3.5. A suboptimal method - estimates averaging

We will now exploit the special structure of the filtering
matrix A to derive a computationally more efficient method
(although less robust) to estimate the ATFs. We rely on the
fact that each column of the Sylvester matrix is a delayed
version of the previous one. Thus, extraction of each of the
columns can be exploited in the noisy case to produce an



estimate of the ATFs. Averaging of the estimates may be
applied to increase robustness. We will use rotations of the
null space matrix given by Eq. 10 for this purpose. Define,
the K × K row rotation matrix,

JK =











0 0 · · · 0 1
1 0 · · · 0

0
. . . 0 · · · 0

... 0
. . .

...
0 · · · 1 0











.

It is obvious that left multiplication of a K-row matrix by
Jk

K will rotate its rows downwards k times, while right mul-
tiplication of a K-columns matrix by (Jk

K)T will rotate its
columns rightwards. Lemma 3.2 can now be used to extract
an estimate of the ATFs.

Lemma 3.2 Apply QR decomposition to the transpose of

the k-times row rotated null space matrix. The last row of

the “R” matrix is equal to the last but k row of the filtering

matrix up to a scaling factor.

Proof: Rotate the 2(n̂a+1)×(n̂a−na+1) null space matrix
G not more than n̂a−na+1 times. Then, GR = Jk

2(n̂a+1)G =

Jk
2(n̂a+1)AE . Exploiting the orthogonality of the matrices

JK we have, GR = Jk
2(n̂a+1)AJT

n̂a−na+1Jn̂a−na+1E . Then,

(GR)T = (Jn̂a−na+1E)T (Jk
2(n̂a+1)AJ

T
n̂a−na+1)

T (15)

Now assume a QR decomposition for the first term (al-
though, E is not known), (Jn̂a−na+1E)T = QR. Then,

(GR)T = QR(Jk
2(n̂a+1)AJT

n̂a−na+1)
T = QR̃. Since, R̃ =

R× (Jk
2(n̂a+1)AJT

n̂a−na+1)
T is a multiplication of two upper

triangular matrices it is also upper triangular. Since the
QR decomposition is unique, Eq. 15 is the QR decomposi-
tion of (GR)T .
The last row of (Jk

2(n̂a+1)AJT
n̂a−na+1)

T is the k but last row

of AT , provided k ≤ n̂a − na + 1. R is a square matrix like
E . Thus, the last row of the R̃ in the QR decomposition
of GT will give the desired filters. Note, that due to the
special structure of A there will be n̂a − na leading zeros
both in front of the a1 and a2 estimates.

3.6. Signal reconstruction

The estimated ATFs can be used in the extended GSC de-
rived by Gannot et al. [4]. This GSC based structure en-
ables the use of general ATFs rather than delay-only filters
in order to dereverberate the speech signal and to reduce
the noise level. It consists of a fixed beamformer branch -
which by use of the correct ATFs eliminates the reverber-
ation, a noise reference construction block - which uses the
ATF ratios, and a multi-channel Widrow-LMS noise can-
celler branch.

4. EXPERIMENTAL STUDY

The validity of the proposed method was tested. A 10 Sec
long speech sentence (80000 samples) was used. This sen-
tence was filtered with two arbitrary 20 taps filters, and a
colored noise signal was added at several levels, to construct
the two signals z1(t), z2(t) with several SNR values. In ap-
plying the algorithm the filter length was overestimated to
be n̂a = 45. Since the number of the null space vectors

(corresponding to generalized eigenvalues equal to 1) was
L = 25, we concluded that the real filter length should be
na = 20. This number was used in the construction of the
various matrices. The noise correlation matrix was esti-
mated using different segments of the same length of noise
only signal. The real and estimated frequency response for
the various SNR levels is depicted in Figure 2. The sen-
sitivity to the noise level is clearly indicated. The other
suboptimal methods proposed are found to be much more
sensitive to the noise level.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Frequency[Hz]

A
m

pl
itu

de
 (

no
rm

al
iz

ed
)

real    
SNR=55dB
SNR=42dB
SNR=37dB

Figure 2: Real and estimated frequency response of an ar-
bitrary ATF.

5. CONCLUSIONS

A method for speech dereverberation - based on null space
extraction (applying GSVD to the noisy data matrix) and
ATFs estimation (exploiting the filtering matrix structure
using LS fitting) - was presented. The LS approach, al-
though imposes a high computational burden, is found to
be superior to the cheaper method of averaging several es-
timates of ATFs, also proposed in this work. Preliminary
results, although achieved in high SNR conditions, show the
potential of the algorithm. Improvements for the method
using partial knowledge of null space is currently under in-
vestigation.
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[3] M. İ. Gürelli and L. Nikias, “EVAM: An Eigenvector-
Based Algorithm for Multichannel Blind Deconvolution
of Input Colored Signals,” IEEE trans. on Sig. Proc.,
vol. 43, no. 1, pp. 134–149, Jan. 1995.

[4] S. Gannot, D. Burshtein and E. Weinstein, “Signal En-
hancement Using Beamforming and Non-Stationarity
with application to Speech,” To appear in IEEE Trans.
on Sig. Proc., Aug. 2001.


